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MATHEMATICAL MODELS OF ELEMENTARY MATHEMATICS
LEARNING AND PERFORMANCE

Patrick Suppes

ABSTRACT

This project was concerned with the development of mathematical
models of elementary mathematics learning and performance. Probabi-
listic finite automata and register machines with a finite number of
registers were developed as models and extensively tested with data
arising from the elementary-mathematics strand curriculum the Institute
for Mathematical Studies in the Social Sciences has developed over a
period of more than five years. This curriculum is delivered to students
in schocls at teletype terminals in a computer-assisted-instruction mode
by telephone linés connected to the Institute's computer at Stanford.

Probabilistic automata were defined and tested for bhasic addition,
subtraction and multiplication exercises. An extensive report of this
work is to be found in the recent hock by Patrick Suppes and Mona
Morningstar entivled Computer-assisted Instruction at Stanford, 1966-58:
Data, Models, and Evaluation of the Arithmetic Programs,

Detailed applicatidn of the register machine mcdels is completed,
but the results are as yet unpublished and will appear subsequent %o
the date of this final report.

The results of these analyses indicate that the kinds of models
developed can be applied to learning and performance in elementary
mathematics, and have implications for detailed pedagogical procedures
~of instruction in these basic skills.
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T. TINTRODUCTION

The psycholcgical study of arithmetic skills, like most other
parts of psycholozy, has a relstively recent history--cnly a2 few sys
tematic stucaies wev‘a made before 1890. The real impetus was provided
by E. L. Thorndike's analysis of the learning of arithmetic in his
Educational Psychology (1919, 1914) and later in his The Psychclogy
of Arithmetic (1922). In an attempt to account for the acquisition
of arithmetic skills in terms of his three psychological laws--ihe
law of readiness, the law of exercise and the law of effect--he tried
to justify and analyze the reason for the traditional importance attached
to drill and practice in arithmetic; for him the psychological purpose
of drill is to strengthen the bonds between stimuli and appropriate re-
sponses. He moved on from such fundamental questions to the more prac-
tical ones of amount and distribution of practice. He emphasized the
advantages of distributed practice and criticized the actual distribution
of practice in textbooks of his time. Some effects of his work on the
revisions of textbooks in the 1920s and later are documented in F“unbakh
and Suppes (1969, pp. 103-110).

In the twenties and thirties there were a large number of good
empirical studies of arithmetic skills, many of which were concerned with
detailed questions that had to be answered in any complete psychological
theory of arithmetic. For example, Buckingham (1925) studied student
preferences and aptitudes for adding up or down in column addition
problems. - An extensive review of this literature may be found in
Suppes, Jerman and Brian (1968).

Empirical studies like those of Buckingham were not designed to
develop an overall theory of arithmetic skills; nor, it is probably
fair to say, was Thorndike completely sensitive to the gap that existed
between his theoretical ideas and the actual algorithms students were
taught to solve problems. There are many stages to work through -1
developing an adequate theory, and there is no one point at which one
can say the theory is now complete in all respects. If, for example,
the theory is adequate at some conceptual level of information proces-
sing, then it 1s possible to move on to additional perceptual questions.
Moreover, once a perceptual theory of a certain level of abstraction is
successfully develcped, it is possible to go on to still more detailed
perceptual questions, such as requiring the theory toc include eye move-
ments of students as well as their numerical responses. It is an impor-
tant methodological precept that at no foreseeable point shall we reach
a fixed and firm bottom beyond which we cannot probe for further details
and a more refined theory.

As a background for the work done under this project, we briefly
sketch the history of work in the Institute for Mathematical Studies in
the Social Sciences at Stanford over the past six or seven years on the
psychclogical study of arithmetical skills. Rather than attempt a gen-
eral coverage, we shall concentrate on a single example--the simple one
of column addition--to illustrate how we have tried continually to deepen

%
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arithmetical skills.

It also should be mentioned that +the data used for
models have all been collected as part (I ihe Instiftute's
in computer-assisted instruction in elementary mathematics.
of this work that was supported by the current project was
directed to t he elementary mathematical skills >i disadvant

-
1

dents. Several of the publications, especisily Suppes and Morningstar
(1970), refer to early phases of this work.

The first question we tried ©o answer was how can one predict the
relative difficulty of different exercises of column addition? I, for
example, we consider problems up to the size of three columns and three
rows, we are confronted with approximately one billion problems. A
meaningful theory must drastically reduce this large number of exercises
to a small number of classes in which gll members of a class are essen-
tially the same in difficulty.

Our first approach (Suppes, Hyman & Jerman, 1967) was to identify
a small number of structural features that would permit us to apply
linear regression models to predict either probability of correct re-
sponse or expected latency of response. Additional applications of
such regression models may be found in Suppes, Jerman and Brian (1968)
and Suppes and Morningstar (1972). The application of such regression
models is exemplified in Section III of this report. As can be seen
from the information given there, the fit of the regression model to
mean student-response datz on column addition exercises is not bad.
Conceptually, however, there are obvious lacunae. The regression model
that predicts response probabilities does not really postulate a specific
process by which students apply an algorithm to solve an exercise.

The next level of theory developed is aimed precisely at otfering
such process models. The natural theoretical tools for proviiing proces:
models of algorithmic tasks are automata, and for most of 2lementary
arithmetic, simple finite automata are satisfactory. There iz, hawevsr,
one weakness in finite automata as ordinarily defined, namely, they have
no place for a probabilistic theory of error, sc the natural step is to
move from finite deterministic automata to probabilistic automata.

.

An automaton becomes probabilistic by making the transition func-
tion from state to state probsbilistic in character. Thus, from a given
input and a given internal state there is a probability of going to any
one of several different states. In general one wants to make the output
function probabilistic also. This means that given an internal state and
an input there is a probability distribution over the next output. (These
ideas are made formally definite in Definitions 1 and 2 of Section II.)

By drastically reducing the source of error to a small number of param-
- eters; we can develop and apply manageable probabilistic automata to
student-response data.
O
ERIC
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Such a probatilistic automzton model takes 2 definite stiep bevond a
regression model in providing in an abstraci sense an adeguate information-
processing model. From a psychulogical standpoint, on the othe: hand, the
automaton models are unsatisfactory in that they lacxk any perceptual com-
ponents, and therefore they do not deal directly with how tihe student
actually processes the formzt of writiten symbols in front of him,

Our final effort as part of this project was very much directed at
this point. In principle, it would be possible to continue the develop-
ment of automaton models with an abstract concept of state to represent
the student’s perceptual processing. A weakness of this extension of
the automaton models is that when the states are left in a general ab-
stract formulation it is natural to end up designing a different automaton
for each of the different tasks in elementary mathematics, and a plethora
of models results., Closer examination of the algorithmic tasks of arith-
metic facing the student in solving exercises indicates that the various
tasks have much in common. This commonality suggests a somewhat differ-
ent approach, an approach via register machines with perceptual instiuc-
tlions.

Register machines were first introduced by Shepherdson and Sturgics
(1963) to give a natural representation of computable functions in terms
that are closer to the idea of a computer accepting instructions than *o
a Turing machine, TIn the case of the representation of computable iunc-
tions, a rather simple set of arithmetic instructions is sufficient. In
particular, an unlimited register machine hac a denumerable seguence of
registers, but any given program only uses a finite number of these reg-
isters and the machine accepts six basic instructions: add one to a
register, subtract one, clear a register, copy from one register to another,
and two jump instructions, one conditional and one not. (This set of six
instructions is not minimal, but it is convenient.) Obviously, for the
perceptual processing that a student does we want a different register
machine and a radically different set of instructions. In addition, it
is natural to postulate only a finite fixed number of registers that
the student can use.

The basic idea of this approach is to drastically simplify the per-
ceptual situation by conceiving each exercise as being presented on a
grid., The student is represented by a model that has instructions for
attending to a given square on the grid; for example, in the standard
algorithms of addition, subtraction and multiplication we begin in the
upper right-hand corner and then have instructions to move downward
through each column and from right to left across columns. Additional
instructions for storing the results of ,an operation, for outputting
the last digit of a stored numeral, etc., are needed. Some further
details are given in Section II, but the discussion is not as complete
as that for automaton models,

The basic idea of register machines is that the different algorithms
are represented by subroutines. One subroutine may be called in another,
as complex routines are built up. The procedure is familiar to most of
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A% the first stage of analyzing register machine modsls we can get
S WS AN %o those for the automaton madel:s by po&*u]ating eyrror
param»*e for execution of main subroatines oF *he rouiine for a Jiven
z.gorithme  In zddition to providing an =xplicit a naly=is of perceptual
proceszing, the register machines provide a natural device for analyting

i-arning. However, the devailed and technicai extension of regiEter
rachines to learning was not made during the course of the present prog-
~ct, but ig work planned for the future.
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In Section IT we describe the theoretical and empirical methods
uased 1n the.project and give a brief, but technical, description of
“he most important models tested. Finally. in Section II1 we sumarize
th= results of the test of the models, but because of the great technl—
cai detail of the results this report provides only a summary, and we
r=f~r the reader %o publications that have already appearsd or are
fortheoming, if he wishes %5 pursue the details.

I. METHCLS

A

A_though the bulk of the r2search conducted under this project

war ToaCerned with probabilistic automaton and register machine models,
w= extended our earlier work on linear regression models and begin *this
discussion of the models with a presentation of the linear regreasion
A
H

o

mod=1l for column addition reported in Suppes and Morningstar \L"z

Linear regression models. We began with regrassion models that
use as independent variables structural. features of individual arith-

‘metic exercises. We denote the jth structural feature of exericse 1

in a given set of exercises by i} The parsmeters estimated from the
datia are the values attached to each structural feature. (In previous
publications we have referred to these structural features as factors,
but this can lead to confusion with *he concept of factor az used in
factor analysis.) We denote the coefficient aszigned *o the jth

structural feature by aj and We emphasize that the structural fea-

tures themselves, as opposed o their coefficients, are chjectively
identifiable by the experimentsr in terms of the exercises themselves,
independent. of the response data.

(@)Y



Let Py be the observed proportion of correci responses on exercise
i for a given group of students. The natural linear regression in terms
of the structural features £, and the coerficients o, is simply
“ L%

=T o f..+ .
pi 3 JIIJ aO

Unfortunately, when the regression is put in this form, there is no
guarantee that probability will be preserved as the ctructural features
are combined to predict the observed proportion of correct responses.
To guaranrtee conservation of probability, it is natural to make the
following transformation and to define a new variable Zye

1l - pi
(1) z, = log-—j;——-,
and then to use as the regressicn model
(2) z, = a,f.. +«
The numerator of equation (lj contains 1 - Py rather than P, SO

that the variable zi increases monotonically rather than decreases

monotonically with the magnitude of the structural features fij'

In Chapter 3 of Suppes and Morningstar (1972), the following
structural features were defined for column-addition exercises.,

Fhe feature SUMR is the number of columns in the largest addend.
For‘phree—row exercises SUMR is defined as 1.5 times the number of
cSIhmns, plus .5 if a column sum is 2C or more. For example,

a
SUMR ( +b ) = 1
C
f; 1.5 if de < 20
SUMR(+C)= .
= ) if de > 20
de -

SUMR (ab + c = de) 2 .

This structural feature reflects the number of columns of addition,
with greater weight being given to columns in three-row exercises
than in two~row exercises.



The second structwral feature is CAR, which represents the number
of times The sum of a column, including any numbers carried to it,
exceeds nine, For example, '

a
CAR (+0 )= O
C
CAR (a + b = cd) = 1
ab O if b+d<9
ef 1 if p+da>g9
ab .
1 if b+d+ <9, a+c+e>9
cd -
AR (4 op ) " ;
- ghi 2 if b+d+Tf>9, atcte>9,

The third structural feature VF reflects the vertical format of
the exercise, The vertical exercises with one-digit responses were
given the vglue 0, Multicolumn exercises with multidigit exercises
and one-~colymn addition exercises with a response of 11 were given
the value 1, One-column addition exercises with a multidigit response
other than 11 were given the value 3, For example,

~—

~

meant to reflact the lLikelihood of the
of -the correct response, especially in

This structural feature is
mistake of reversing the digits

a one-column addition exercise.
enviromment where students were
responses to vertical exercises
responses to horizontal exercise

In the computer-assisted instruction
responding at teletype terminals,
were typed from right to left, while
5 were typed from left to.-right. Thus,

~ it was possiple for a student to have in mind the correct answer, but

to err by typing the digits in t
that this structural feature iz
computer-baged terminal than whe

he reverse order. [t is fair to say
of more importance in working at a
n using paper and pencil.



Three-state auto: 2 central weaknesgs of the regression

models is that they = : dels. They do not provide ~:» a
schematic analysis o: ~ umic steps the student uses t. ioan
answver. Automaton modeli :irv process models and therefore thei: - rep-

resents a natural extension of the regression analysis. TFor the exercices
in column addition we may restrict ourselves to finite automata, but as
ordinarily defined they have no place for errors. However, this is easily
introduced by moving from deterministic state transitions to probabilistic
ones.

We begin with the definition of a finite deterministic automaton,
and then generalize.

Defirition 1. A structure ¥ = (A,V M,Q,so> is a finite

I’VO’
(deterministic) automaton with output if and only if

(1) A is a finite, nonempty set,

(ii) V; and V, are finite nonempty sets (the input and output

vocabularies, respectively).

(iii) M is a function from the Cartesian product A X VI to A
(M defines the transition table),

(iv) Q is a function from the Cartesian product A X Vi to Vj,

(@ is the output function),

(v) g is in A (so is the initial state).

As an example of a finite automaton with output, that is, a finite
automaton in the sense of this definition, we may characterize an autom-
aton that will perform two-row column addition.

A = {0,1} ,
Vi o= {(myn) : 0<m n<9},
Vo = {0,1,...,9} ,

O if m+ n+ k <

]

95
M(k, (m,n))
1 if m+n+k>9, for k =0,1,

Q(k, (myn))

]

(k +m + n) mod 10 ,

89 = 0.

Thus the automaton operates by adding first the ones' column, storing
as internal state O if there is no carry, 1 if there is a carry,

9



-outputting the sum of the ones' column modulus 10, and then moving on
to the input of the two tens' column di~its, etc. The initial internal
state Sg is O, because at the begir. - of the exercise there is no

'carry'.

is a (finite)

Definition 2. A structure U= @A,VI,VO,p,q,sO)

probabilistic automaton if and only if

(i) A is a finite, nonempty set,

(ii) V. and V. are finite, nonempty sets,
I — 0

(iii) p is a function on A X V X A to the interval [0,1] such

that for each s in A and o in V, P, , As a probability density
J

eo,

over A, i.e
(a) for each s' in A, p_ (s') >0,
(k) = p_ (s') =1,

s'eA

(iv) q is a function on A X VI X VO to” [0,1] such that for each

s in A and o in V, g  _ is a probability density over Vo
J

(v) s, is in A.

In the probabilistic generalization of the automaton for colum:
addition, the number of possible parameters that can be introduced is
uninterestingly large. Each transition M(k,(m,n)) may be replac=3
by a probabilistic transition 1 - ek,m,n and ek,m,n’ and each output
Q(k(myn)), by 1C mrobabilities for a total of 2200 parameters.

A three-parmer:er automaton model structurally rather close to the
regression model Ir «asily defined. First, two parameters, ¢ and 1,
are introduced acwording to whether there is a ‘carry' to the next
column,

P(M(k,(myn)) =0 | kx+m+n<9)=1-c¢

and

e Tt

P(M(k,(mn)) =1 |k +m+n>9)=1-1q.

In other words, if there is no 'carry', the probability of a correct
transition is 1 - € and if there is a 'carry' the probability of such
a transition is 1 - n.  The third parameter, 7, is simply the prob-
ability of an output error. Conversely, the probability of a correct
output is:

P(Q(k,(myn)) = (k + m + n) mod 10) =1 - ¥ .

10



Consider now exercise i with Ci carrys and Di digits. If
we ignore the probability of two error: leading to a correct response
(e.g., a transition error followed by an output error), then the prob-
ability of a * =2ct answver is Jjust

. Dy C. D.-C.-1
(3) P(c ot v to Exercise 1) = (1-7) (1 -7) M1-¢)* T 7,

As already indicated, it is important to realize that this equation is

an approximation of the 'true’ probability. However, to compute the
exact probability it is necessary to make a definite assumption about

how the probability 7 of an output error is distributed among the nine
possible wrong responses. A simple and intuitively appealing one-paramete:
model 1s the one that arranges the 10 digits on a circle in natural order
with 9 next to O, and then makes the probability of an error j steps to
the right or left of the correct response dd, For example, ii' 5 is the
correct digit, then the probability of responding 4 is &, of 3 is ;2,
of 2is 83, of Lis 8%, of O is 8, of 6is 5, of 7 is &2, ate,
Thus in terms of the original model '

v = 2(s + 5% + 82 + 5) + 5 .

Conszzer now the exer-ise

W7
+l§ -
Then, where di = the I = digit response,
P(61:2)=(1’7):

P(d, =6) = (1 -7)(1-n)+nd.

]

Here ~he additional term is nd, because if the state entered is 0
rath=" than 1 when the pair (7,5) is input, the only way of obtaining
a correct answer is for 6 to be given as the sum of O + L + 1, wvhich
has =z Drobability ©. Thus the probability of a correct response to
thiz.=sercise is (1 - 7)[(1 - 7)(1 - q) + nd]. Hereafter we shail
ignmr==the n® (or €3) terms.

= may get a direct comparison with the linear regression model
if we take the logarithm of both sides of (3) to obtain:

(L) 1og p; = D; log (L-9) + C, log (L-7) + (Di--Ci -1) log (1-¢) ,

and estimate log 1-7, 1log 1- n, and log 1-¢ by regression with
the azditive constant set equal to zero. We also may use some other

apprazch to estimation such as minimum x2 or maximum likelihood.

11




The automaton model naturally suggests a more detailed analysis of
the data. Unlike the regression model, the automaton provides an imme-
diate analysis of the digit-by-digit responses. Ignoring the ed-type
terms; we can in fact find the general maximum-likelihood estimates of
7, €, and 7 vwhon the response data are given in this more explicit
Torm,

Let Lucre be n digit responses in a block of exercises, For
1<1i=<n let x; be the random variable that assumes the value 1 if
the ith response is correct and O otherwise. It is then easy to see

that
(L-7) if 1 is a ones'-column digit,

(1 - 7)(1 - €) if it is not a ones' column and there
is no carry to the ith digit,

(1 - )(L - 1) if there is a carry to the ith
| digit,

sranted that €d-type terms are ignored. Simila-1:r for the same three
-ltermatives :

J1--na-
1-(1-97)2-

go for a string of actual digit responses Xq,...,Xx, Wwe can write the
Zikelihood function as: :

;

(5) Blxpseensx) = (1= - ) 2-m)2- (1-9)@- T - (-7 -,

where a = number of correct responses, b = number of incorrect responses
in the ones' column, c = mumrher of correct respomses not in the ones’
column when the internal stazme is O, d = number of correct responses
winen the Internal state is I, e = number of incorrect responses not in
tize on=s’ column when the internal state is 0, and f = number of incor-
r=ct respozses when the intermal state.is 1. (In the model statistical
indepemdnmre of responses is assured by the correction procedure.) It

is moré xonvenient to estimate 7' =1-7, €' =1-¢ and ' =1 - q,
Making this change, taking the logarithm of both sides of (5) and dir-
ferentiating with respect to each of the variables, we obtain three
equations that determine the maximum-likelihood estimates of 7', €',
and n':

JL .a __b _ e’ fq'
571 7! 1 - 71 1 - 71€I 1 - 7tnl

_—_-O’

12




2L ey
de' T i 1 - 7y'e! O

oL 4 __ o
Ot Tt T 1Tyt T

Sclr-irz these equations, we obtain as estimates:

‘a - ¢ -d

- i o=
7 a+h-c-4a”’
- cla+b-c-4d)

(c +e)(a-~c-4d)?

~y _ dla+b ~c -d)
T EE TG - e - d)

.

A-=o—= .7 data using these estimates i. discusssd in the next secti: .

Tow-parameter and five-parameter cxtomatzn models., As a result of
w rirary work with the data selectec —o test - model., we considc:ad
: =rzansim=s of the basic automaton :el. Ths “irst ic a four-
T=r=r=yer modiel that generalizes the wacmz three—cz-ometer model to
st forr sTme contextual effects thizt were obmerv:  in student re-
z—m=e= to addition problems with conzer=tive carry & & no-carry receiving
ofrmmme.  The second model generalizes it four-—params-er model further

to vwmEn o fifth parameter. This extension allows tiz- model to treat
et oior o umms that consist of only one digit giZfer=mtly from ncrmal

etumms that ~onsist of pairs of digits To be adgsc.

Tl four—marameter model is constructed by spilitting parameter -,
deZl = &bOVe, Into two parameters csmited by ¢g and 2. This i:

dors 0 distinguish addition columns wiizh, when ccrrectly solved, do
nc- eive 2 carry from an immediatels preceding columc although Lha’
pacal :=xr does receive a carry. Thul, the model now reilecis the pos-
st... .rfiuemice of the present state ( zrry) upon = student’s tendency
tor smorate unnecessary carrys. The reasons for tiis modification are
m= _z2arer when we discuss ths analysis of the dzta. Parameters ¥
ar - are retained as they were defined in the three-parameter model.
Tee: cezinidiom of € dis replaced by
€O=p[cn+l=l| =0 and xn+yn<lO],
= ! = = 1 d : + < 10
1 p[cn+l 1 | c an <t 101,
S vy -z the carry (0 or 1) to column i of the prcblem.
e i y-parameter model is also a two-state machine, but with one

zmaTEe trans tiorn prebability now a function of the state value.

[}
N
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The probability that any given addition problem will be solved
correctly mey be written:

(6) P{All Answer Digits Correct)

D~-C—E-l(:1 - e )E

D’.. CI
= (1 - 9) (L - 1)1 - ¢ 1)

‘O)
where D and € are the number of digits and carrys az defined earlier,
and E is the number of columns in the problem that do not receive a
carry, but which are preceded by a column that does. We continue to-
assume that all errors occur independently and yet do not combine (o
produce correct answers, This assumption applies to all the automaton
models we discuss.

We zhall not reproduce the details of the likelihood equation for
the four-parameter model. These are given in Suppes and Morningstar
(1972, p. 1hk),

The five-parameter model is directly c-—ained from the preceding
models by splitting the output-error probat:Zity 7 into two components.
The generality of the four-parameter model =rd its parameters e¢., €.,

N . . - , 0 1
and 1 are retained, but we add:

Yo = the probability that an output er occurs given that either
only one digit is printed in the column to 2dded; or a carry fram the
preceding column is the only source of outp... @and no printed digits
appear in the column;

7 = the probability that an output er» ccurs given that more
than one digit is printed in the column to = _:ded, or that one printed
digit and a carry from the preceding column = ur,

Thiz modification allows the model to refle> he conjecture that stu-
dents find it easier to process an additior - .umn in which all they
need do to get the correct answer digit iz —. -opy the only digit ap-
pearing in-that column; thig, as opposed tc . iing two digits and
perhaps a carry- before obtaining an answer.

The probability that an answer to a gi. problem will be correct
may be written as:

(7) P(All Answer Digits Correct)
D-8
)

S c, T-0-B-1, E
1- 71) (L -m)"(1-c¢ € )

= (l - '}’O O) (l = l 3

where D, C; and E are as defined earlisr, and S is the number of
columns in the problem which involve the sux of at least two digits, or
one digit and a carry. Again, for details == estimation problems in
this model, the reader is referred to Suppes and Morningstar (1972,

pp. 147-1L8).




Register machines with perceptual instructions. To introduce
greater generality and to deepen the analysis to include specific ideas
about the perceptual procezssing of a column-addition exercise, wo moved
on to register machines for the reasons already described in Section I.

For column addition three registers suffice ir .. i analysis,
First there is the stimulus-supported register [S3] that hOlQu an encoded
representation of a printed symbol to which the student is perceptually
attending. In the riesent case the alphabet of such symbols consists of
the 10 digits and th= underline symbol ' '. A5 a new symbol is attended
to, previously stor=gd symbols are lost unless transferred to a non-
stimulus-supported register. The second register is the non-stimulus-
supported register IiSS]. It provides long-term storage for computational
rasults. The thirz megister is the coerations register [OP] that acts as
z short-term store, both for encodingz of external stimuli and for results
oZ calculazions czrried out on the. co=tents of other reglsuelb, It is
&-:0 prime=:ily norm—sitimulus-supporied.-

As already stated in the main text, we drastically simplify the
perceptual situation by conceiving each exercise as being presented on
& =Zrid with at most one symbol in each square of the grid. For columnu

atfition we= number the coordinates of the grid from the upper right-
hemd corner. Thus, in the exercise

)
7

15
2k
+ 37

=

the coordfnates of the digit 5 are (141), the coordinates of 4 are {2,1),
the coordinates of 7 are (3,1), the cocrdinates of 1 are (1,2) and so
forth, with the Tirst coordinate being the row number and the second
being the column number. :

The restricted set of instructions we need for column addition
are the following 10.
Attend (a,b): Direct attenifon to grid position (a,b).
(+a, +b): Shift attention on the grid by (ta, xb).

Readin [SS]: Read into the stimulus~supported register the
physical symbm! in the grid position addressed
by Attend.

Lookup [R1] + [R2]: Look up table of basic addition facts for adding
contents of register [R1] and [R2] and store
the result in [R1].

Copy [R1] in [Rzl: Copy the content of register [R1] in register
[R2].

Deleteright [R]: Delete the rightmos* symbcl of veg:t: r [R].

15




Jump I: Jump to line labeled L.

Jump (val) R,L: Jump to line label~? T i7" - atent of ..ister
[R] dis v ...

Outright [R]: Write (output) the rightmost symbol of register
[R] at grid position addressed by Attend.

Fnd: Terminate processing of current exercise.

Exit; Terminate subroutine processing and return to
next line of main program.

Of the 10 instructions oniy Lookup does not have ar elementary character.
Irn our complete analysis it has the status of a subroutine built up from
more primitive operations such as those of counting. It is;, of course,
more than a problem of comstructing the table of basic addition facts
from counting subroutines; it is also a matter of being able to add a
single digit to any aumber stored in the non-stimulus-supported register
(w38] or [OP], as, for example, in addinz many vows of digits in a given
column. I omit the details of building up this subroutine.

It should alsoc bte obvious that the remaining nine instructions are
not a minimal set; for exemple, the unconditional Jjump instruction is
ezsily eliminated. We do think the nine are both elementary and psy-
cnologically intuiti—~= for the subject matter at hand.

To illustrate ir a simple way the use of sukroutines, we may con-
sider two that are useful in writing the program for column addition.
The first is the vertical scan subroutine, which is needed for the fol-
lowing purpose. In adding rows of numbers with an uneven number cf
digits, we caumot simply stop when we reach a blank grid square on the
l=ft of the topmost row, We must also scan downward to see if there
zre digits in that coluan in any other row. A second aspect of this
same problem is that in our model the student is perceptually proces-
ziag omly one grid square at a time, so that he must have a check for
zinding the bottom row by looking continually for an underlinz symbol.
Ctherwise he could, according to an apparently natural subroutine, pro-
c=2ed dndefinitely far downward encountering only blanks and leaving
=sntirely the immediate perceptual region of the formatted exercise,
Here #is the subroutine. In the main program it is preceded by an Attend
instrmction. - :

Vertical Scan Subroutine

W-scan (0-9, )
Ra Rewdin
Twmp (0-9, ) 3S, Fin
Attend 41 -1)

F=adin

16




Jump (_) SS. Fin
Attend (+0,+1)
CJurr R

Fin Exit

The labels Rd and Fin of two of the 7ires are shown on the left,

The second subroutine is one that outputs all the digits in a register
working from right to left. For example, in column addition, after the
leftinost column has been added, there may still be several digits re-
maining to print out to the left of this column in the 'answer' row.

Output [R]
Put Outright [R]
Deleteright [R]
Attend (0,+1)
Jump (Blank) R, Fin
Jump Put '

Fin Exit

Using these two subroutines the program for vertical addition is rela-
tively straightforward and requires 26 lines. I number the lines for
" later reference; they are not a part of the program.

Vertical Addition

a

Attend (1,1)
Readin
Copy [S8] in [CP]
Attend (+1,+0)
Readin
Opr Lookmp [OP] + [35]
Rd Attemi (+3,0)
Readin
Jump (0-9) SS, Opr

L o

O OO~ O WUt = W N+
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104 Jump (Blark) SS, R4

11. Attend (+1,0)

2, Outright [OP]

15. ' Deleteright [OP]
14, Copy [OP] in [NSS]
15, Attend (1,+1)

16. V-scan (0-9, )

17, - Jump (_) S5, Fin
18, Jump (0-9) 88, Car
19. Copy [S8] in [OP)
20, Jump Rd

21, Car Copy [NSS} in [OP]
22, Jump Opr

23, Fin Jump (Blank) NSS, Out
2, o Attend (+1,0)
25, Output [NSS]

26. Qut End

To show how the program works, we may consider a simple one-column
addition exercise. We shcw at the right of each lin= tkhs conmtent of
each register just before the next row is attended to, i-.e.. after
all operations have been performed.

[ss] [oP) [NSE]
4 L L
p) 5 9
) 3 2
8 8 20
. . 20
0 0 2

This kind of analysis can be generalized to prove that the program is
correct; i.e.;, will output the ccrrect answer to any cciumn-additiorn
exercise, but this aspect of matters will not be pursued further here.

_ By attaching error parameters to varicus segments of the program,
performance models are easily genersted. For comparztive purposes we

18



may define a performance model essentially identical to the two-state
probabilistic automaton already introduceéd for column addition restricted
to two rows. To lines 6-12 we attach the output error parameter 7,

and to lines 13-19 we attach the 'carry' error parameter 1n if there

-is a carry, and the error parameter ¢ if theve is not. Given this

characterization of the error parameters the two performance models ares
behaviorally identical., On the other hand, it is c¢lear that the program
for the three-register machine is much move general than the two-state
probabilistic automaton, since it is able to solve any vertical addi-
tion exercise. It is also obvious that other performance models can
easily be defined for vertical addition by introducing error parameters
attached to different segments of the program.

Students. To test -the models outlined above, as already lndlcaued
we used students participating in the elementary-mathematics CAI programs
of the Institute. This project supported 10 terminals located in
Brentwood School in East Palo Alto. More than 80 percent of the stu-
dents attending Brentwood School are minority students. Much of the
data reported in publications listed below are drawn from Brentwood
School. In addition, the models described above were also applied
toward the end of the grant period to data drawn from handicapped
children participating in the CAI network organized by the Institute
to include a number of schools for deaf students.

III. RESULTS

We summarize in this section the main results. We emphasize,
however, that the reader who is interested in the detailed testing
of the models is urged to go to the publications summarized at the end
of this section in which results are reported. For simplicity, we do
not consider the testing of the register machine models but concentrate
here on the linear regression models and the probatilistic auvtomatcn
models.

Linear regression models. Using the linear regression model
described in Section II, the following regression was obtained for
the mean response data of 63 third graders taking the pretest shown in
Table 1. Complete experimental details about the students, etc., are
given in Suppes and Morningstar (1972, Ch. 3). :

p; = .53 SUMRi + .93 CARi + .31 VEi" L, 06 .

The multiple R was .74 and R2 was .54, which reflects a reasonable fit
T2 the data. Extensive data analysis of a similar kind for other basic
skills, using similar regression models, is reported in Suppes and
Morningstar (1972).

Test of automaton models for addition. Tests of the three-, four-
and five-parameter addition models for third-grade addition, including
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TABLE 1

Pretest Exercises in Column Addition

2)

3)

h)

5)

6)

7)

17

|+
v

.
. O\ O\

1k

A2

* 15

%63
+ 21k

116
+ 212

12
Al

-

g

9)

10)

12)

13)

1)

15)

16)

17)
18)
19)

20)

5267
+ 283

L6

5
+ 23

3986

+ 4735
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the exercises displayed in Table 1, as well as similar fourth-grade
exercises, are shown in Table 2. Both sets of exercises were given
both as pretests and posttests, and the corresponding parameter esti-
mates are shown in the table.

The fit of the predictions to observed proportion correct is shown
in Figure 1.

These data, reported in a 7O-page chapter of Suppes and Morningstar
(1972), were analyzed in conjunction with Mr. Alex Camnara. Interested
readers are referred to Chapter 4 of that book. ’

Publications. Researéh performed under this grant has been pub-
lished@ in the following articles.

P. Suppes and M. Morningstar. Four programs in computer-assisted
instruction. In W. H. Holtzman (Ed.), Computer-assisted instruction,
testing

g, and guidance. New York: Harper & Row, 1970. Pp. 233-2065,

P. Suppes and M, Morningstar. Technolicgical innovations: Computer-
assisted instruction and compensestory education. In F., Korten,
S. Cook & J. Iacey (ids.), Psychology and the problems of society.,
Washningtcn, D. C.: American Psychological Association, Inc., 1970,
Pp. 221-27%5.

s Suppes, Computer-zssisted instruction at Stanford. In Man and
computer. Proceedings of international conference, Bordeaux 1970.
Basel: Karger, 1972. Pp. 298-330.

P. Suppes and M. Morningstar. Computer-assisted instruction at Stanford,
1966-68: Data, models, and evaluation of the arithmetic programs.
New York: Academic Press, 1972, 533 pp.

P. Suppes. Facts and fantasies of education. In M. C. Wittrock (Ed.),
Changing schools: Alternatives from educational research. LEnglewood
Cliffs, N. J.: Prentice-Hall, 1973. (The technical appendix of this
article reports research conducted under this grantq)

Publications in preparation. The principal investigator, Patrick
Suppes, together with his collaborators in the Institute, are in the
process of preparing a bock that will be a sequel to the Suppes 2nd
Morningstar (1972) book, and that will report a number of detailed anal-
yses of the models described in this report. There will be an especially
long chapter on the register machine models written by Suppes and Lindsay
Flannery, a graduate student in the Institute. Part of the results on
register machine models of Suppes and Flannery will alsoc be written for
publication in article form, probably in the Journal of Mathematical
Psychology. -
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PROPORTION CORRECT

FORM A PRETEST

0
.6
5 ' T W N [ N TN R N T R N A R N O R T
- FORM A POSTTEST
.0 |-
9
.8 -
s [#----%
----- 4-parameter model
X - 3-parameter model
6 I~ o alternate
[ T S [ N N N N Y (N Y T O A O I
0] 4 8 12 16 20
PROBLEM

Fig. 1. Proportion correct per problem for data and models.
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IV, CONCLUSIONS
Several conclusions emerge from this research over a period of
several years on mathematical models of elementary-mathematics learning

and performance. We brea:r these conclusions into four broad classec.

1. PFmpirical Adequacy

The work indicated i this report, but reported more extensively
in Suppes and Morningstar (1972), and in other publications that have
not yet appeared, demonstrates that the kind of process models using
ideas from the theory of automata and the abstract theory of register
machines have direct application to the empirical study of students’
performance in elementary arithmetic skills. It is fair to say that
the models developed as the main focus of this project are probably
the most detailed process models that yet exist in the psychological
or educational literature, insofar as the basic skills of elementary
mathematics are concerned. From the work performed it is fair to con-
clude that automaton models of the basic operations of addition, sub-
traction, multiplication and division can provide a2 detailed account
of student performance, including especially the analysis of the
typical errors that students make.

2. Open Questions

At the same time, the research begun under this project leaves more
questions open than solved. The automaton models, which were most
thoroughly tested empirically, do not provide anything like a satis-
factory account of the perceptual processing engaged in by students,
nor do they take adequate account of the actual real-time operations.

The models are defined in terms of discrete time rather than continuous
time, and no perceptual apparatus is assumed. Extensions in both of
these directions are needed in order to develop more adequate models,

The first steps of incorporating some simple perceptual processing were
developed as part of the register machine models described in Section I,
but these models represent only a very elementary and simple form of per-
ceptual processing. The actual perceptual processing engaged in by stu-
dents is obwviously more elaborate and more complex in nature.

3, Need for Learning Modelg

Although it was the original intention of the project to develop a
wide range of learning models as well as performance models, the details
of the performance models developed and tested in this project were suf-

ficiently complex &nd +V ~obler " collecting adequate bodies of data
were sufficiently _.¢f thal uir next steps to correspondingly de-
tailed learnin; =:ode .. w0t taken. Some work on learning was described

in Suppes (1975), and further work on learning will be reported in some
of the unpublished work yet to appear, but it is fair to say, that the
models as described above concentraté almost entirely on performance.
The beginning of a complex theory of learning for finite automata in
Suppes (1969) and in Rottmayer (1970) form a promising beginning but
further work is needed for extension. '
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‘Zcal Applications

te of the shortcomings of the models developed as descrited

ar automaton and register machine models developed already have
pc nplications in the organization of individualized curriculum
ir 'y mathematics, especially in a computer-ascisted in-'ru_tion
se” .. .=rhaps the central criticism that can be made of mosi .cork i-
con -t -isted instruction at the present time is tie relative sim-
pl: che model of the student assumed. The kind of models develoi=d
her: - sugh still far too simple, do take a definite step toward pos-
tus sre than a simple error rate and a simple latency of response
in ..ent, and do attempt to impose an internal structure on his
pre 2 of curriculum materials. As more deeply individualized cur-
ric . attempted, the kind of models developed as basic resecarch
unde project should play a natural part in providing +tools £~ the
devel % of such highly individualized curriculum.

otential of the approach is that presenting exercises to the

studs . an individualized basis will nc longer be based simply on

the rates and latency rates of the student, but on the =stimate

of ' ' .»d parameters of a model of his internal processing capacity.
Errz:r. -1 now be translated into error pazrameters that have a meazning-
ful = retation in a process model of th basic skills the student

is Ie& ~ ‘1g. Applications of such detailed models would seem difficult
ir cds ' -oom settings, but it is considerably more practical when placed

I = G  3tting, and there is reason to hope that such models will be
de¥y=)l=  luring the coming decade.
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